Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,*N*'-Dibenzyl-*N*''-(4-bromobenzoyl)-*N*,*N*'-dimethylphosphoric triamide

Saeed Dehghanpour,^a* Richard Welter,^b Aliou Hamady Barry^c and Farzaneh Tabasi^a

^aDepartment of Chemistry, Alzahra University, Vanak, Tehran, Iran, ^bLaboratoire DECMET, UMR CNRS 7513, Université Louis Pasteur, Strasbourg, France, and ^cDépartement de Chimie, Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania

Correspondence e-mail: dehganpour_farasha@yahoo.com

Received 9 January 2008; accepted 19 February 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.053; wR factor = 0.136; data-to-parameter ratio = 19.2.

In the title compound, $C_{23}H_{25}BrN_3O_2P$, the P atom has a distorted tetrahedral coordination. In the crystal structure, the molecules form centrosymmetric dimers *via* pairs of essentially linear N-H···O hydrogen bonds.

Related literature

For the use of carbacylamidophosphate, see: Barak *et al.* (2000); Burla *et al.* (1989); Gubina *et al.* (2000); Mallender *et al.* (2000); Trush *et al.* (2003). For related structures, see: Trush *et al.* (1999).

Experimental

Crystal data $C_{23}H_{25}BrN_3O_2P$ $M_r = 486.34$ Monoclinic, $P2_1/n$

a = 9.0140 (4) A	
b = 13.2690(5) Å	١
c = 19.377 (1) Å	

 $\beta = 94.1500 (14)^{\circ}$ $V = 2311.54 (18) \text{ Å}^3$ Z = 4Mo K α radiation

Data collection

Nonius KappaCCD diffractometer5214 indAbsorption correction: none2593 ref12951 measured reflections $R_{int} = 0.$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.135$ S = 1.005214 reflections $0.11 \times 0.09 \times 0.08 \text{ mm}$

 $\mu = 1.87 \text{ mm}^{-1}$

T = 293 (2) K

5214 independent reflections 2593 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.051$

271 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.62 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots O2^i$	0.86	1.99	2.845 (3)	170

Symmetry code: (i) -x + 2, -y + 1, -z.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

SD acknowledges the Alzahra University Research Council for partial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2095).

References

- Barak, D., Ordentlich, A., Kaplan, D., Barak, R., Mizrahi, D., Kronman, C., Segall, Y., Velan, B. & Shaerman, A. (2000). *Biochemistry*, 39, 1156–1161.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.
- Gubina, K. E., Ovchynnikov, V. A., Amirkhanov, V. M., Fischer, H., Stumpf, R. & Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 576–582.
- Mallender, W. D., Szegletes, T. & Rosenberry, T. L. (2000). *Biochemistry*, **39**, 7753–7763.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Trush, V. A., Amirkhanov, V. M., Ovchinnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). *Polyhedron*, 22, 1221–1229.
- Trush, V. A., Domasevitch, K. V., Amirkhanov, V. M. & Sieler, J. (1999). Z. Naturforsch. Teil B, 54, 451–455.

Acta Cryst. (2008). E64, o633 [doi:10.1107/S1600536808004777]

N,N'-Dibenzyl-N''-(4-bromobenzoyl)-N,N'-dimethylphosphoric triamide

S. Dehghanpour, R. Welter, A. H. Barry and F. Tabasi

Comment

Carbacylamidophosphate compounds have attracted substantial interest for many years. These compounds have been employed in coordination chemistry as chelating reagents for various metal ions *via* their =P(O)N(H)C(O)- moiety (Trush *et al.*, 2003; Gubina *et al.*, 2000), as prodrugs in pharmacology and as pesticides in agriculture (Barak *et al.*, 2000; Mallender *et al.*, 2000). A thorough knowledge of the structural properties of these compounds should be beneficial for a detailed understanding of their pharmacological effects. The title compound, (I), was prepared by the reaction of (pBr-C₆H₅)C(O)NHP(O)(Cl)₂ with two molecules of methylmenzyl amine.

The crystal structure of (I) reveals that, in the molecular core unit C(O)NHP(O), the C(O) and P(O) oxygen atoms are in anti-positions to each other. The phosphorus centre has a slightly distorted tetrahedral coordination, mainly due to the presence of the different substituents. The N3–P1–N1 angle $(105.20 (12)^\circ)$ is narrower than the ideal tetrahedral angle of 109.5, whereas the opposite O2–P1–N3 angle $(119.05 (13)^\circ)$ is wider than the ideal tetrahedral angle. The P1–O2 bond length (1.474 (2) Å) is in good agreement with P–O distances in other carbacylamidophosphates (Trush *et al.*, 1999).

Examination of intermolecular distances indicates that the crystal structure of compound (I) consists of $C_9H_{13}N_2O_2P$ units linked together *via* N—H···O hydrogen bonds into centrosymmetric dimers featuring eight-membered (OPNH)₂ rings (Fig.2, Table 1).

Experimental

Compound (I) was synthesized *via* the reaction of $BrC_6H_4C(O)NHP(O)Cl_2$ with two molecules of methylbenzylamine in a 1:4 molar ratio. Methylbenzylamine was added dropwise to a mixture of $BrC_6H_4C(O)NHP(O)Cl_2$ in chloroform while stirring at room temperature for 4 h. The product was filtered off and then washed with cold water. The compound was recrystallized from ethanol (yield 88%). Analysis, calculated for C_{23} H₂₅ Br N₃ O₂ P: C 56.80, H 5.18, N 8.64%; found: C 56.81, H 5.19, N 8.64%.

Refinement

H atoms were placed in idealized positions with C—H distances at 0.97, 0.96 and 0.93 Å for CH₂, CH₃ and aromatic CH groups, respectively using a riding model. $U_{iso}(H)$ for H was assigned as 1.2 $U_{eq}(Ci)$ of the attached C atoms (1.5 for methyl). No absorption correction was applied due to the small cystal size and the sufficiently low μ value.

Figures

Fig. 1. Molecular structure of I showing the atom-labelling scheme with thermal ellipsoids drawn at the 50% probability level.

Fig. 2. Representation of the hydrogen bonds in the structure of (I). For clarity, only the O2 atom in the second molecule is labeled (O2ⁱ), Symmetry code i: 2 - x, 1 - y, -z.

N,N'-Dibenzyl-N''-(4-bromobenzoyl)- N,N'-dimethylphosphoric triamide

Crystal data	
C ₂₃ H ₂₅ BrN ₃ O ₂ P	$F_{000} = 1000$
$M_r = 486.34$	$D_{\rm x} = 1.397 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 10293 reflections
a = 9.0140 (4) Å	$\theta = 1.0-27.5^{\circ}$
<i>b</i> = 13.2690 (5) Å	$\mu = 1.87 \text{ mm}^{-1}$
c = 19.3770 (10) Å	T = 293 (2) K
$\beta = 94.1500 \ (14)^{\circ}$	Prism, colorless
$V = 2311.54 (18) \text{ Å}^3$	$0.11\times0.09\times0.08~mm$
Z = A	

Data collection

Nonius KappaCCD diffractometer	2593 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.051$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.9^{\circ}$
π scans	$h = -11 \rightarrow 10$
Absorption correction: none	$k = -17 \rightarrow 14$
12951 measured reflections	$l = -17 \rightarrow 25$
5214 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.052P)^2 + 0.3719P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.001$
5214 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
271 parameters	$\Delta \rho_{min} = -0.62 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.97528 (7)	0.99976 (3)	0.19720 (3)	0.1095 (3)
P1	0.97988 (9)	0.37741 (5)	0.08475 (4)	0.0427 (2)
01	0.8889 (3)	0.48944 (15)	0.21515 (13)	0.0676 (7)
O2	1.0335 (2)	0.37714 (14)	0.01466 (10)	0.0493 (5)
N1	0.9570 (3)	0.49921 (14)	0.10487 (13)	0.0453 (6)
H1	0.9661	0.5414	0.0717	0.054*
N2	1.0988 (3)	0.32013 (17)	0.13878 (12)	0.0478 (7)
N3	0.8203 (3)	0.32336 (16)	0.09738 (13)	0.0474 (6)
C1	0.9380 (3)	0.6529 (2)	0.17215 (15)	0.0440 (7)
C2	0.8517 (3)	0.7031 (2)	0.21718 (16)	0.0505 (8)
H2	0.7872	0.6665	0.2429	0.061*
C3	0.8593 (4)	0.8061 (2)	0.22469 (17)	0.0588 (9)
Н3	0.7986	0.8395	0.2541	0.071*
C4	0.9584 (4)	0.8585 (2)	0.18784 (18)	0.0615 (10)
C5	1.0478 (4)	0.8100 (2)	0.14387 (19)	0.0682 (10)
Н5	1.1152	0.8465	0.1196	0.082*
C6	1.0366 (4)	0.7066 (2)	0.13596 (17)	0.0564 (9)
H6	1.0961	0.6733	0.1060	0.068*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C7	0.9257 (3)	0.5404 (2)	0.16691 (17)	0.0486 (8)
C8	1.0706 (4)	0.2882 (3)	0.20873 (17)	0.0669 (10)
H8A	0.9697	0.3039	0.2176	0.100*
H8B	1.1373	0.3228	0.2416	0.100*
H8C	1.0861	0.2168	0.2131	0.100*
C9	1.2491 (4)	0.2979 (2)	0.11888 (18)	0.0566 (9)
H9A	1.3200	0.3171	0.1566	0.068*
H9B	1.2686	0.3390	0.0792	0.068*
C10	1.2746 (3)	0.1886 (2)	0.10116 (17)	0.0506 (8)
C11	1.3680 (4)	0.1286 (3)	0.14281 (19)	0.0680 (10)
H11	1.4111	0.1543	0.1842	0.082*
C12	1.3988 (5)	0.0301 (3)	0.1237 (3)	0.0867 (13)
H12	1.4631	-0.0095	0.1520	0.104*
C13	1.3348 (5)	-0.0078 (3)	0.0640 (3)	0.0903 (14)
H13	1.3546	-0.0738	0.0513	0.108*
C14	1.2410 (5)	0.0505 (3)	0.0221 (2)	0.0830 (12)
H14	1.1980	0.0241	-0.0191	0.100*
C15	1.2100 (4)	0.1478 (3)	0.04062 (19)	0.0646 (10)
H15	1.1450	0.1865	0.0122	0.078*
C16	0.8132 (4)	0.2134 (2)	0.0867 (2)	0.0710 (11)
H16A	0.9095	0.1846	0.0981	0.107*
H16B	0.7829	0.1994	0.0391	0.107*
H16C	0.7425	0.1848	0.1158	0.107*
C17	0.6770 (3)	0.3738 (2)	0.08216 (17)	0.0545 (8)
H17A	0.6872	0.4439	0.0959	0.065*
H17B	0.6043	0.3433	0.1102	0.065*
C18	0.6182 (3)	0.3696 (2)	0.00736 (16)	0.0463 (8)
C19	0.5215 (4)	0.2942 (3)	-0.01586 (19)	0.0655 (10)
H19	0.4908	0.2463	0.0152	0.079*
C20	0.4698 (4)	0.2890 (3)	-0.0847 (2)	0.0781 (11)
H20	0.4056	0.2374	-0.0998	0.094*
C21	0.5125 (4)	0.3591 (3)	-0.13033 (19)	0.0726 (11)
H21	0.4761	0.3562	-0.1764	0.087*
C22	0.6101 (4)	0.4348 (3)	-0.10826 (19)	0.0665 (10)
H22	0.6410	0.4823	-0.1395	0.080*
C23	0.6611 (4)	0.4394 (2)	-0.03991 (19)	0.0574 (9)
H23	0.7261	0.4907	-0.0251	0.069*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1798 (6)	0.0408 (2)	0.1100 (5)	-0.0035 (2)	0.0253 (4)	-0.0180 (2)
P1	0.0553 (5)	0.0330 (4)	0.0398 (5)	0.0004 (4)	0.0042 (4)	0.0012 (3)
01	0.108 (2)	0.0516 (14)	0.0455 (14)	-0.0064 (12)	0.0206 (14)	0.0020 (11)
O2	0.0716 (14)	0.0369 (11)	0.0401 (13)	0.0037 (9)	0.0092 (11)	0.0006 (9)
N1	0.0654 (17)	0.0327 (13)	0.0383 (15)	-0.0008 (11)	0.0068 (13)	0.0019 (10)
N2	0.0522 (17)	0.0476 (14)	0.0432 (16)	0.0058 (12)	0.0009 (13)	0.0108 (12)
N3	0.0476 (16)	0.0404 (14)	0.0542 (17)	-0.0004 (11)	0.0035 (13)	0.0044 (12)

C1	0.0524 (19)	0.0436 (17)	0.0356 (18)	0.0029 (14)	-0.0001 (15)	-0.0034 (14)
C2	0.052 (2)	0.0533 (19)	0.0466 (19)	-0.0017 (15)	0.0035 (16)	-0.0025 (16)
C3	0.071 (3)	0.053 (2)	0.051 (2)	0.0103 (17)	0.0030 (18)	-0.0144 (17)
C4	0.087 (3)	0.0387 (18)	0.058 (2)	0.0037 (17)	0.001 (2)	-0.0077 (16)
C5	0.091 (3)	0.053 (2)	0.063 (2)	-0.0175 (18)	0.016 (2)	-0.0092 (18)
C6	0.073 (2)	0.0428 (18)	0.056 (2)	-0.0014 (16)	0.0195 (18)	-0.0081 (16)
C7	0.060 (2)	0.0449 (17)	0.042 (2)	0.0006 (15)	0.0078 (16)	-0.0022 (16)
C8	0.090 (3)	0.063 (2)	0.047 (2)	0.0128 (19)	0.0006 (19)	0.0097 (17)
C9	0.051 (2)	0.0508 (19)	0.067 (2)	-0.0036 (15)	-0.0023 (17)	0.0058 (17)
C10	0.0425 (19)	0.0478 (18)	0.062 (2)	-0.0007 (14)	0.0061 (17)	0.0063 (17)
C11	0.064 (2)	0.063 (2)	0.075 (3)	0.0067 (18)	-0.006 (2)	0.005 (2)
C12	0.092 (3)	0.068 (3)	0.099 (4)	0.028 (2)	-0.006 (3)	0.016 (3)
C13	0.096 (3)	0.063 (3)	0.113 (4)	0.017 (2)	0.012 (3)	-0.011 (2)
C14	0.083 (3)	0.078 (3)	0.087 (3)	0.005 (2)	0.004 (2)	-0.021 (2)
C15	0.062 (2)	0.062 (2)	0.068 (3)	0.0057 (18)	-0.004 (2)	0.0013 (19)
C16	0.074 (3)	0.0398 (18)	0.098 (3)	-0.0097 (16)	-0.003 (2)	0.0053 (19)
C17	0.052 (2)	0.058 (2)	0.054 (2)	0.0010 (16)	0.0072 (17)	-0.0010 (16)
C18	0.0409 (18)	0.0485 (18)	0.050 (2)	0.0054 (14)	0.0055 (15)	-0.0038 (15)
C19	0.061 (2)	0.070 (2)	0.064 (3)	-0.0133 (18)	0.0004 (19)	0.005 (2)
C20	0.081 (3)	0.073 (2)	0.077 (3)	-0.020 (2)	-0.015 (2)	0.001 (2)
C21	0.083 (3)	0.077 (3)	0.055 (2)	0.007 (2)	-0.011 (2)	-0.004 (2)
C22	0.071 (3)	0.068 (2)	0.059 (3)	0.0012 (19)	-0.002 (2)	0.0139 (19)
C23	0.059 (2)	0.050 (2)	0.062 (2)	-0.0029 (15)	-0.0046 (18)	0.0030 (17)

Geometric parameters (Å, °)

Br1—C4	1.889 (3)	C10-C11	1.377 (4)
P1—O2	1.474 (2)	C10-C15	1.382 (4)
P1—N2	1.631 (2)	C11—C12	1.392 (5)
P1—N3	1.642 (2)	C11—H11	0.9300
P1—N1	1.679 (2)	C12—C13	1.353 (6)
O1—C7	1.218 (4)	С12—Н12	0.9300
N1—C7	1.368 (4)	C13—C14	1.369 (6)
N1—H1	0.8600	С13—Н13	0.9300
N2—C8	1.460 (4)	C14—C15	1.375 (5)
N2—C9	1.465 (4)	C14—H14	0.9300
N3—C17	1.465 (4)	С15—Н15	0.9300
N3—C16	1.474 (4)	C16—H16A	0.9600
C1—C6	1.370 (4)	С16—Н16В	0.9600
C1—C2	1.381 (4)	C16—H16C	0.9600
C1—C7	1.501 (4)	C17—C18	1.508 (4)
C2—C3	1.376 (4)	С17—Н17А	0.9700
С2—Н2	0.9300	С17—Н17В	0.9700
C3—C4	1.372 (5)	C18—C23	1.377 (4)
С3—Н3	0.9300	C18—C19	1.381 (4)
C4—C5	1.374 (5)	C19—C20	1.382 (5)
C5—C6	1.385 (4)	С19—Н19	0.9300
С5—Н5	0.9300	C20—C21	1.359 (5)
С6—Н6	0.9300	C20—H20	0.9300

C8—H8A	0.9600	C21—C22	1.382 (5)
С8—Н8В	0.9600	C21—H21	0.9300
C8—H8C	0.9600	C22—C23	1.371 (5)
C9—C10	1.512 (4)	C22—H22	0.9300
С9—Н9А	0.9700	С23—Н23	0.9300
С9—Н9В	0.9700		
O2—P1—N2	110.25 (13)	C11—C10—C15	118.3 (3)
Ω_{2} P1 N3	119.05 (13)	C11—C10—C9	121.2 (3)
N2—P1—N3	104.06 (12)	C15-C10-C9	120.2(3)
Ω^2 —P1—N1	105 69 (12)	C10-C11-C12	120.8 (3)
N2—P1—N1	112.69 (13)	C10-C11-H11	119.6
N3—P1—N1	105.20 (12)	C12—C11—H11	119.6
C7—N1—P1	128.7 (2)	C13—C12—C11	119.7 (4)
C7—N1—H1	115.7	C13—C12—H12	120.1
P1—N1—H1	115.7	C11—C12—H12	120.1
C8—N2—C9	114 4 (2)	C12-C13-C14	120.3 (4)
C8—N2—P1	1255(2)	C12—C13—H13	119.9
C9 = N2 = P1	120.1(2)	C14 - C13 - H13	119.9
C17 - N3 - C16	1133(2)	C13 - C14 - C15	120 3 (4)
C17—N3—P1	122 65 (19)	C13—C14—H14	119.8
C16—N3—P1	116.2 (2)	C15-C14-H14	119.8
C_{6} C_{1} C_{2}	119.3 (3)	C14 - C15 - C10	120.6 (3)
C_{6} C_{1} C_{7}	122.0(3)	C14-C15-H15	119.7
$C_{2} = C_{1} = C_{7}$	1122.0(3) 118.7(3)	C10-C15-H15	119.7
C_{3} C_{2} C_{1} C_{1}	121 3 (3)	N3-C16-H16A	109.5
C_{3} C_{2} H_{2}	119.3	N3-C16-H16B	109.5
$C_1 - C_2 - H_2$	119.3	H_{16A} $-C_{16}$ $-H_{16B}$	109.5
C4 - C3 - C2	118.5 (3)	N3-C16-H16C	109.5
C4—C3—H3	120.7	H_{16A} $-C_{16}$ $-H_{16C}$	109.5
C_{2} C_{3} H_{3}	120.7	H16B-C16-H16C	109.5
$C_{2} = C_{3} = C_{4}$	120.7	N3-C17-C18	114.8 (3)
$C_3 - C_4 - Br_1$	121.3(3) 120.2(3)	N3-C17-H17A	108.6
$C_5 - C_4 - Br_1$	1185(3)	C18— $C17$ — $H17A$	108.6
C4-C5-C6	119.4 (3)	N3-C17-H17B	108.6
C4—C5—H5	120.3	C18 - C17 - H17B	108.6
C6—C5—H5	120.3	H17A—C17—H17B	107.5
C1 - C6 - C5	120.2 (3)	C^{23} — C^{18} — C^{19}	118 1 (3)
C1—C6—H6	119.9	C_{23} C_{18} C_{17}	1212(3)
C5—C6—H6	119.9	C19-C18-C17	121.2(3) 120.7(3)
01 - C7 - N1	122 5 (3)	C18 - C19 - C20	120.7(3)
01 - 07 - 01	121.5(3)	C18 - C19 - H19	119.6
N1-C7-C1	116.0 (3)	C_{20} C_{19} H_{19}	119.6
N2—C8—H8A	109 5	$C_{21} - C_{20} - C_{19}$	120.2 (3)
N2-C8-H8B	109.5	$C_{21} = C_{20} = H_{20}$	119.9
H8A = C8 = H8B	109.5	C19 - C20 - H20	119.9
N2-C8-H8C	109.5	C20—C21—C22	120.0 (3)
H8A—C8—H8C	109.5	C20—C21—H21	120.0
H8B—C8—H8C	109.5	C22—C21—H21	120.0
N2—C9—C10	114.3 (2)	C23—C22—C21	119.5 (3)
	× /		<- /

N2—C9—H9A	108.7	C23—C22—H22	120.3
С10—С9—Н9А	108.7	C21—C22—H22	120.3
N2—C9—H9B	108.7	C22—C23—C18	121.5 (3)
С10—С9—Н9В	108.7	С22—С23—Н23	119.3
Н9А—С9—Н9В	107.6	С18—С23—Н23	119.3
O2—P1—N1—C7	-171.6 (3)	C2-C1-C7-01	-27.1 (4)
N2—P1—N1—C7	-51.2 (3)	C6—C1—C7—N1	-30.6 (4)
N3—P1—N1—C7	61.6 (3)	C2-C1-C7-N1	152.3 (3)
O2—P1—N2—C8	-167.1 (2)	C8—N2—C9—C10	76.2 (3)
N3—P1—N2—C8	-38.3 (3)	P1—N2—C9—C10	-104.6 (3)
N1—P1—N2—C8	75.1 (3)	N2-C9-C10-C11	-111.6 (3)
O2—P1—N2—C9	13.8 (2)	N2-C9-C10-C15	71.6 (4)
N3—P1—N2—C9	142.6 (2)	C15-C10-C11-C12	1.2 (5)
N1—P1—N2—C9	-104.0 (2)	C9-C10-C11-C12	-175.6 (3)
O2—P1—N3—C17	-81.9 (3)	C10-C11-C12-C13	-0.8 (6)
N2—P1—N3—C17	154.9 (2)	C11-C12-C13-C14	0.5 (7)
N1—P1—N3—C17	36.2 (3)	C12-C13-C14-C15	-0.5 (7)
O2—P1—N3—C16	64.9 (3)	C13-C14-C15-C10	1.0 (6)
N2—P1—N3—C16	-58.3 (3)	C11-C10-C15-C14	-1.3 (5)
N1—P1—N3—C16	-177.0 (2)	C9-C10-C15-C14	175.6 (3)
C6—C1—C2—C3	2.2 (5)	C16—N3—C17—C18	-65.4 (3)
C7—C1—C2—C3	179.4 (3)	P1—N3—C17—C18	82.3 (3)
C1—C2—C3—C4	-2.0 (5)	N3-C17-C18-C23	-85.4 (4)
C2—C3—C4—C5	0.5 (5)	N3-C17-C18-C19	93.4 (3)
C2—C3—C4—Br1	-179.1 (2)	C23-C18-C19-C20	0.2 (5)
C3—C4—C5—C6	0.7 (6)	C17—C18—C19—C20	-178.7 (3)
Br1-C4-C5-C6	-179.6 (3)	C18—C19—C20—C21	-0.7 (6)
C2-C1-C6-C5	-0.9 (5)	C19—C20—C21—C22	1.2 (6)
C7—C1—C6—C5	-178.0 (3)	C20-C21-C22-C23	-1.1 (6)
C4—C5—C6—C1	-0.5 (5)	C21—C22—C23—C18	0.5 (5)
P1—N1—C7—O1	-10.8 (5)	C19—C18—C23—C22	-0.1 (5)
P1—N1—C7—C1	169.7 (2)	C17—C18—C23—C22	178.8 (3)
C6—C1—C7—O1	150.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···O2 ⁱ	0.86	1.99	2.845 (3)	170.4
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$.				

Fig. 1

